124 research outputs found

    PGC-1α mediated muscle aerobic adaptations to exercise, heat and cold exposure

    Get PDF
    PGC-1α is regarded as a key regulator of mitochondrial biogenesis due to its central role in regulating the activity of key transcription factors associated with encoding mitochondrial components. Additionally, PGC-1α has shown to mediate adaptations that increase fat metabolism and angiogenesis, contributing to the overall oxidative phenotype of the muscle. While it is well established that exercise is a potent stimulator of PGC-1α, recent evidence indicates that heat and cold exposures may also influence mitochondrial biogenesis through the up-regulation of PGC-1α. This highlights the potential use of these modalities in conjunction with exercise to enhance training adaptations. As such, the purpose of this review is to describe the possible mechanisms and pathways by which exercise, as well as hot and cold exposures may influence mitochondrial biogenesis. It is clear that changes in intracellular calcium, oxidative stress and phosphorylation potential are major up-regulators of PGC-1α during exercise. Moreover, there is evidence implicating calcium signalling, in addition to β-adrenergic activation in cold-induced mitochondrial biogenesis, while PGC-1α during heat exposure is likely triggered by changes in phosphorylation potential and nitric oxide signalling. However, these mechanisms appear to change considerably when cold/heat is administered following exercise, and seem to be dependent on the experimental models used (i.e. in vitrovs. in vivo, rodent vs. human). Understanding the effects heat/cold exposure and its interaction with exercise may lead to the optimisation and development of temperature-related interventions to enhance training adaptations, or aid in the treatment of mitochondrial related diseases

    Editorial: The use of post-exercise cooling as a recovery strategy: Unraveling the controversies

    Get PDF
    Post-exercise cooling is a popular recovery strategy utilized by athletes, and of interest to many research groups. Significant body of research have examined the effects of post-exercise cooling on outcomes such as physical performance, regulation of inflammatory biomarkers, and psychophysical indices related to perceived fatigue, recovery and wellbeing. ..

    Reviewing the current methods of assessing hydration in athletes

    Get PDF
    Background Despite a substantial body of research, no clear best practice guidelines exist for the assessment of hydration in athletes. Body water is stored in and shifted between different sites throughout the body complicating hydration assessment. This review seeks to highlight the unique strengths and limitations of various hydration assessment methods described in the literature as well as providing best practice guidelines. Main body There is a plethora of methods that range in validity and reliability, including complicated and invasive methods (i.e. neutron activation analysis and stable isotope dilution), to moderately invasive blood, urine and salivary variables, progressing to non-invasive metrics such as tear osmolality, body mass, bioimpedance analysis, and sensation of thirst. Any single assessment of hydration status is problematic. Instead, the recommended approach is to use a combination, which have complementary strengths, which increase accuracy and validity. If methods such as salivary variables, urine colour, vital signs and sensation of thirst are utilised in isolation, great care must be taken due to their lack of sensitivity, reliability and/or accuracy. Detailed assessments such as neutron activation and stable isotope dilution analysis are highly accurate but expensive, with significant time delays due to data analysis providing little potential for immediate action. While alternative variables such as hormonal and electrolyte concentration, bioimpedance and tear osmolality require further research to determine their validity and reliability before inclusion into any test battery. Conclusion To improve best practice additional comprehensive research is required to further the scientific understanding of evaluating hydration status

    Weight loss strategies in combat sports and concerning habits in mixed martial arts

    Get PDF
    Context: Combat sports are typically divided into weight classes, and body-mass manipulation to reach a weight class is commonplace. Previous research suggests that weight loss practices in mixed martial arts (MMA) may be more extreme than in other combat sports. Purpose: To investigate the magnitude of weight loss and the prevalence of weight loss strategies in different combat sports. Methods: Competitors (N = 637) from Brazilian jiu-jitsu, boxing, judo, MMA, Muay Thai/kickboxing, taekwondo, and wrestling completed an online questionnaire seeking information regarding their weight loss practices. Results: Body-mass manipulation was commonly undertaken by all combat-sport athletes, with a particularly high incidence of gradual dieting, increased exercise, and fluid restriction. Skipping meals was higher in taekwondo and wrestling (84%) compared with the other combat sports (∼58%), whereas training in heated rooms and forced oral fluid loss (spitting) was higher in wrestling (83% and 47%, respectively) compared with other combat sports (∼45% and ∼19%, respectively). MMA athletes reported the highest usage of sauna (76%) and water loading (67%) while also reporting the second-highest use of training in rubber/plastic suits (63%). Conclusions: Body-mass manipulation was present in all combat sports, with the prevalence and magnitude of acute weight loss greater in MMA. The incidence of and practices reported will help support staff be fully aware of the variety of methods these athletes and coaches may use to achieve weight loss. Additionally, the results could aid regulatory bodies in the further development of policies on weight cutting

    The current state of weight-cutting in combat sports

    Get PDF
    In combat sports, athletes are divided into categories based on gender and body mass. Athletes attempt to compete against a lighter opponent by losing body mass prior to being weighed (i.e., \u27weight-cutting\u27). The purpose of this narrative review was to explore the current body of literature on weight-cutting and outline gaps for further research. Methods of weight-loss include energy intake restriction, total body fluid reduction and pseudo extreme/abusive medical practice (e.g., diuretics). The influence of weight-cutting on performance is unclear, with studies suggesting a negative or no effect. However, larger weight-cuts (~5% of body mass inh) do impair repeat-effort performance. It is unclear if the benefit from competing against a smaller opponent outweighs the observed reduction in physical capacity. Many mechanisms have been proposed for the observed reductions in performance, ranging from reduced glycogen availability to increased perceptions of fatigue. Athletes undertaking weight-cutting may be able to utilise strategies around glycogen, total body water and electrolyte replenishment to prepare for competition. Despite substantial discussion on managing weight-cutting in combat sports, no clear solution has been offered. Given the prevalence of weight-cutting, it is important to develop a deeper understanding of such practices so appropriate advice can be given

    Reducing aerodynamic drag by adopting a novel road-cycling sprint position

    Get PDF
    Purpose: To assess the influence of seated, standing, and forward-standing cycling sprint positions on aerodynamic drag (CdA) and the reproducibility of a field test of CdA calculated in these different positions. Methods: A total of 11 recreational male road cyclists rode 250 m in 2 directions at around 25, 32, and 40 km·h. Results: A main effect of position showed that the average CdA of the 2 d was lower for the forward-standing position (0.295 [0.059]) compared with both the seated (0.363 [0.071], P = .018) and standing positions (0.372 [0.077], P = .037). Seated and standing positions did not differ from each other. Although no significant difference was observed in CdA between the 2 test days, a poor between-days reliability was observed. Conclusion: A novel forward-standing cycling sprint position resulted in 23% and 26% reductions in CdA compared with a seated and standing position, respectively. This decrease in CdA could potentially result in an important increase in cycling sprint velocity of 3.9-4.9 km·

    Validity of the Velocomp PowerPod compared with the Verve Cycling InfoCrank power meter

    Get PDF
    Purpose: To determine the validity of the Velocomp PowerPod power meter in comparison with the Verve Cycling InfoCrank power meter. Methods: This research involved 2 separate studies. In study 1, 12 recreational male road cyclists completed 7 maximal cycling efforts of a known duration (2 times 5 s and 15, 30, 60, 240, and 600 s). In study 2, 4 elite male road cyclists completed 13 outdoor cycling sessions. In both studies, power output of cyclists was continuously measured using both the PowerPod and InfoCrank power meters. Maximal mean power output was calculated for durations of 1, 5, 15, 30, 60, 240, and 600 seconds plus the average power output in study 2. Results: Power output determined by the PowerPod was almost perfectly correlated with the InfoCrank (r \u3e .996; P \u3c .001) in both studies. Using a rolling resistance previously reported, power output was similar between power meters in study 1 (P = .989), but not in study 2 (P = .045). Rolling resistance estimated by the PowerPod was higher than what has been previously reported; this might have occurred because of errors in the subjective device setup. This overestimation of rolling resistance increased the power output readings. Conclusion: Accuracy of rolling resistance seems to be very important in determining power output using the PowerPod. When using a rolling resistance based on previous literature, the PowerPod showed high validity when compared with the InfoCrank in a controlled field test (study 1) but less so in a dynamic environment (study 2)

    Considerations when assessing endurance in combat sport athletes

    Get PDF
    Combat sports encompass a range of sports, each involving physical combat between participants. Such sports are unique, with competitive success influenced by a diverse range of physical characteristics. Effectively identifying and evaluating each characteristic is essential for athletes and support staff alike. Previous research investigating the relationship between combat sports performance and measures of strength and power is robust. However, research investigating the relationship between combat sports performance and assessments of endurance is less conclusive. As a physical characteristic, endurance is complex and influenced by multiple factors including mechanical efficiency, maximal aerobic capacity, metabolic thresholds, and anaerobic capacities. To assess endurance of combat sports athletes, previous research has employed methods ranging from incremental exercise tests to circuits involving sports-specific techniques. These tests range in their ability to discern various physiological attributes or performance characteristics, with varying levels of accuracy and ecological validity. In fact, it is unclear how various physiological attributes influence combat sport endurance performance. Further, the sensitivity of sports specific skills in performance based tests is also unclear. When developing or utilizing tests to better understand an athletes\u27 combat sports-specific endurance characteristic, it is important to consider what information the test will and will not provide. Additionally, it is important to determine which combination of performance and physiological assessments will provide the most comprehensive picture. Strengthening the understanding of assessing combat sport-specific endurance as a physiological process and as a performance metric will improve the quality of future research and help support staff effectively monitor their athlete\u27s characteristics

    Acute dehydration impairs endurance without modulating neuromuscular function

    Get PDF
    Introduction/Purpose: This study examined the influence of acute dehydration on neuromuscular function. Methods: On separate days, combat sports athletes experienced in acute dehydration practices (n = 14) completed a 3 h passive heating intervention (40∘C, 63% relative humidity) to induce dehydration (DHY) or a thermoneutral euhydration control (25∘C, 50% relative humidity: CON). In the ensuing 3 h ad libitum fluid and food intake was allowed, after which participants performed fatiguing exercise consisting of repeated unilateral knee extensions at 85% of their maximal voluntary isometric contraction (MVIC) torque until task failure. Both before and after the fatiguing protocol participants performed six MVICs during which measures of central and peripheral neuromuscular function were made. Urine and whole blood samples to assess urine specific gravity, urine osmolality, haematocrit and serum osmolality were collected before, immediately and 3 h after intervention. Results: Body mass was reduced by 3.2 ± 1.1% immediately after DHY (P \u3c 0.001) but recovered by 3 h. Urine and whole blood markers indicated dehydration immediately after DHY, although blood markers were not different to CON at 3 h. Participants completed 28% fewer knee extensions at 85% MVIC (P \u3c 0.001, g = 0.775) and reported a greater perception of fatigue (P = 0.012) 3 h after DHY than CON despite peak torque results being unaffected. No between-condition differences were observed in central or peripheral indicators of neuromuscular function at any timepoint. Conclusion: Results indicate that acute dehydration of 3.2% body mass followed by 3 h of recovery impairs muscular strength-endurance and increases fatigue perception without changes in markers of central or peripheral function. These findings suggest that altered fatigue perception underpins muscular performance decrements in recovery from acute dehydration

    Reliability and validity of maximal mean and critical speed and metabolic power in Australian youth soccer players

    Get PDF
    © 2020 Cameron Lord, Anthony J. Blazevich, Chris R. Abbiss, Fadi Ma\u27ayah, published by Sciendo 2020. The reliability and validity of maximal mean speed (MMS), maximal mean metabolic power (MMPmet), critical speed (CS) and critical metabolic power (CPmet) were examined throughout the 2016-2017 soccer National Youth League competitions. Global positioning system (GPS) data were collected from 20 sub-elite soccer players during a battery of maximal running tests and four home matches. A symmetric moving average algorithm was applied to the instantaneous velocity data using specific time windows (1, 5, 10, 60, 300 and 600 s) and peak values were identified. Additionally, CS and CP¬met values calculated from match data were compared to CS and CPmet values determined from previously validated field tests to assess the validity of match values. Intra-class correlation (one-way random absolute agreement) scores ranged from 0.577 to 0.902 for speed, and from 0.701 to 0.863 for metabolic power values. Coefficients of variation (CV) ranged from good to moderate for speed (4-6%) and metabolic power (4-8%). Only CS and CPmet values were significantly correlated (r = 0.842; 0.700) and not statistically different (p = 0.066; 0.271) to values obtained in a shuttle-running critical test. While the present findings identified match-derived MMS, MMPmet, CS and CPmet to be reliable, only CS and CPmet derived from match play were validated to a CS field test that required changes in speed and direction rather than continuous running. This suggests that both maximal mean and critical speed and metabolic power analyses could be alternatives to absolute distance and speed in the assessment of match running performance during competitive matches
    • …
    corecore